Endotoxin-Induced Tryptophan Degradation along the Kynurenine Pathway: The Role of Indolamine 2,3-Dioxygenase and Aryl Hydrocarbon Receptor-Mediated Immunosuppressive Effects in Endotoxin Tolerance and Cancer and Its Implications for Immunoparalysis

نویسندگان

  • Elisa Wirthgen
  • Andreas Hoeflich
چکیده

The degradation of tryptophan (TRP) along the kynurenine pathway plays a crucial role as a neuro- and immunomodulatory mechanism in response to inflammatory stimuli, such as lipopolysaccharides (LPS). In endotoxemia or sepsis, an enhanced activation of the rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO) is associated with a higher mortality risk. It is assumed that IDO induced immunosuppressive effects provoke the development of a protracted compensatory hypoinflammatory phase up to a complete paralysis of the immune system, which is characterized by an endotoxin tolerance. However, the role of IDO activation in the development of life-threatening immunoparalysis is still poorly understood. Recent reports described the impact of inflammatory IDO activation and aryl hydrocarbon receptor- (AhR-) mediated pathways on the development of LPS tolerance and immune escape of cancer cells. These immunosuppressive mechanisms offer new insights for a better understanding of the development of cellular dysfunctions in immunoparalysis. This review provides a comprehensive update of significant biological functions of TRP metabolites along the kynurenine pathway and the complex regulation of LPS-induced IDO activation. In addition, the review focuses on the role of IDO-AhR-mediated immunosuppressive pathways in endotoxin tolerance and carcinogenesis revealing the significance of enhanced IDO activity for the establishment of life-threatening immunoparalysis in sepsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of indoleamine 2,3-dioxygenase-aryl hydrocarbon receptor pathway in the TLR4-induced tolerogenic phenotype in human DCs

A controlled inflammatory response is required for protection against infection, but persistent inflammation causes tissue damage. Dendritic cells (DCs) have a unique capacity to promote both inflammatory and anti-inflammatory processes. One key mechanism involved in DC-mediated immunosuppression is the expression of tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase (IDO). IDO has been...

متن کامل

Cancer Immunotherapy by Targeting IDO1/TDO and Their Downstream Effectors

The tryptophan (TRP) to kynurenine (KYN) metabolic pathway is now firmly established as a key regulator of innate and adaptive immunity. A plethora of preclinical models suggests that this immune tolerance pathway - driven by the key and rate-limiting enzymes indoleamine-2,3-dioxygenase and TRP-2,3-dioxygenase - is active in cancer immunity, autoimmunity, infection, transplant rejection, and al...

متن کامل

Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion.

Tryptophan catabolism in cancer is increasingly being recognized as an important microenvironmental factor that suppresses antitumor immune responses. It has been proposed that the essential amino acid tryptophan is catabolized in the tumor tissue by the rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO) expressed in tumor cells or antigen-presenting cells. This metabolic pathway creates an...

متن کامل

Tryptophan Catabolism in Cancer: Beyond IDO and Tryptophan

Tryptophan catabolism in cancer is increasingly being recognized as an important microenvironmental factor that suppresses antitumor immune responses. It has been proposed that the essential amino acid tryptophan is catabolized in the tumor tissue by the rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO) expressed in tumor cells or antigen-presenting cells. This metabolic pathway creates an...

متن کامل

P 78: The Role of Kynurenine Pathway in Suicidal Behavior and Depression

According to global statistics, over 80,000 deaths occur by suicide annually. Up to 90% of complete suicides are based on psychiatric disorders specifically major depressive disorder (MDD) and bipolar disorder. Furthermore high levels of inflammation have been indicated in suicidal patients in both central nervous system and the peripheral blood. Two biological mechanisms that play a key role i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015